Grasshopper project presented at the Universities located in Seville (Spain)
Abengoa, an international company that applies innovative technology solutions for sustainable development in the infrastructure, energy and water sectors, through Abengoa Innovación, had the opportunity to present the Grasshopper Project in the main Universities of Sevilla (Spain), in which it participates and whose objective is the production of sustainable energy through a Fuel Cell Power Plant using Hydrogen.
The first seminar took place in March for the students of “Hydrogen-based Systems” subject of the Degree in Energy Engineering taught at the “Higher Technical Engineering School” of the University of Seville. The second one was organized in April for students of the “Industrial Technologies Projects” subject that is part of the Engineering degrees at the Loyola University.
During these sessions, the students were explained the importance that Green Hydrogen and Fuel Cell Technologies have nowadays, the status of the Grasshopper Project, some of the lessons learnt during the construction phase of the project and some of the results of the tests that are being carried out.
The Grasshopper Project continues being disseminated to reach different audience target, brilliant students this time. We will come back soon with very interesting news.
__________________________________________________________________________________________________
This project has been funded by the Fuel Cells and Hydrogen 2 Joint Undertaking undersigned agreement number 779430. It is supported by the European Union’s Horizon 2020 framework program for research and innovation and by the Hydrogen Europe and Hydrogen Europe Research associations.
Read MoreGrasshopper project in the webinar organized by the Spanish Fuel Cells Association
Abengoa, an international company that applies innovative technology solutions for sustainable development in the infrastructure, energy and water sectors, through Abengoa Innovación, has participated at the “Fuel cells and Hydrogen in the energy scenario” webinar, in the panel of Industrial Initiatives. The presentation of Abengoa has been focused on the Grasshopper project in which it participates and whose objective is the production of sustainable energy from hydrogen using fuel cells.
This online webinar, organized by the Spanish Fuel Cells Association (APPICE) and that took place on January 31st, has been a great opportunity for the Grasshopper project to spread its promising and successful results and promote its second phase in the Netherlands.
For more details of the webinar agenda check the following link:
https://appice.es/docs/Programa-Seminario-APPICE-31En23.pdf
We will come back soon with very interesting news.
About Abengoa
Abengoa applies innovative technology solutions for sustainability in the infrastructure, energy, and water sectors. (www.abengoa.com)
Read MoreGrasshopper project in the EU Hydrogen Week

Yesterday, October 27th, the Grasshopper project was presented at the European Hydrogen Week during the EU Research Days, among other projects, specifically at the “End users: heat and power” session.
The European Hydrogen Week is an annual event dedicated to the clean hydrogen technologies. It is co-organized by the Clean Hydrogen Partnership and its members, the European Commission, Hydrogen Europe, and Hydrogen Europe Research. Abengoa, the international company that applies innovative technology solutions for sustainability in the infrastructures, energy and water sectors, trough Abengoa Innovación, is an active member of the Hydrogen Europe.
The Grasshopper project has received great interest at the event for being a new generation of Hydrogen Fuel Cell Power Plants: more cost effective, flexible in energy production, achieving an estimated CAPEX below 1500 EUR/kWe at an annual production rate of 25 MWhe, and with promising results during the testing phase.
For more information about the agenda of the European Hydrogen Week 2022, check the following link:
This project has been funded by the Fuel Cells and Hydrogen 2 Joint Undertaking undersigned agreement number 779430. It is supported by the European Union’s Horizon 2020 framework program for research and innovation and by the Hydrogen Europe and HydrogenEurope Research associations.
Read MoreThe Pilot Plant has been transferred to The Netherlands!!!

After some quite busy summer months, we are glad to announce that the GRASSHOPPER Pilot Plant has been moved successfully to The Netherlands. Milestone achieved last September!!!
The pilot plant has been transported by land to The Netherlands. The departure point was the Abengoa’s testing facilities, at the Port of Seville (Spain). At its final destination, the SAT (Site Acceptance Test) will be carried out, and then, the demonstration plant will be in operation for its final validation.
This new phase will serve for obtaining valuable information from the PEM Fuel Cell Power Plant (FCPP) technology.
Tips:
- The Grasshopper project creates a new generation of FCPP capable of generating electricity and heat without emissions from hydrogen using fuel cells, with water as the only by-product.
- Don´t miss the awesome videos in our YouTube channel: https://www.youtube.com/c/GrasshopperProject?app=desktop
Missed the webinar? Watch it online now
For those who missed the webinar that took place on 28th of March, there is no need to worry. The session was recorded and uploaded to Youtube. Or perhaps you want to revisit some interested data? Whichever your reason, you can re-watch the whole event right here. And don’t forget to contact us!

Project webinar – It is time to meet the team
After many months of hard work, setbacks and achievements, we are approaching the project end. During the last months, we have had the opportunity to present the project to some lucky groups that were able to travel to Seville and see the plant live. However, as it happened with any other aspect of our lives, covid prevents us from scheduling any live event. But there is always a bright sight! The grasshopper team has prepared a public webinar to share our learning and experience with the world. Here is a brief summary of the content you can expect in the webinar
- Overview of project goals and objectives
- Main results and achievement obtained so far
- Virtual tour to the 100 kW pilot plant
- Questions and interaction with the technical members of the project
There are limited spots, so be sure to register using the following link! Also, check out our new introductory video of the project, including a sneak peak to the pilot plant.
—> Register now here! <—-

Happy Grasshoppian Holidays 2021!
Don’t let the sunny sky deceive you. Although we can enjoy some comfortable temperatures here in Seville even in December, it is also Christmas season for us. The Grasshopper team wishes you happy holidays and an easier year 2022. Our work hasn’t finished yet so we will be back in January with recharged Hydrogen tanks. 🙂

Grasshopper becomes famous!!!
Hydrogen is a trending topic; we all already know. In the Hydrogen rush, Grasshopper is not being left and is becoming famous!!!
As you know, the pilot plant is currently in Abengoa’s testing facilities, located in Free Zone of Seville (Spain), and once passed the start-up phase, the plant will be transferred to its destination in the Dutch city of Delfzijl.
Before the transfer is made, and motivated by the good results from the test (be patient, this will update in another post ), Grasshopper has triggered an institutional event. Both the mayor of Seville, Juan Espadas and the delegate of the Free Zone, Alfredo Sánchez Monteseirín, visited the plant last Wednesday. Naturally, they didn’t want to miss the opportunity to see first-hand the first of a new generation power plants. Power plants based on fuel cells can operate dynamically with rapid response, which allows them to contribute to developing a circular economy and zero-emission society providing grid stabilization services.

Grasshopper team made a quick presentation to understand the aim of the project. After that, a guided tour of the facilities by the Grasshopper technical team. The typical good weather from Seville, even in December, even improved the experience.


In the words of Juan Espadas:
“This is a powerful work of research and technological innovation that reveals the full extent of the talent that exists in the company Abengoa, which is a source of pride for Seville and Andalusia.”
Alfredo Sánchez Monteseirín emphasized that:
“In the coming years, we must accelerate the large-scale transformation of our energy system to achieve a 100% renewable, and therefore clean, design by 2050.
The press has been made of the event, and Grasshopper appears in many news! Here there are some links so that you can enjoy them:
Abengoa :: Press Room :: News :: News Archive :: 2021 :: December
But this is not the only appearance of the Grasshopper project in the media. Visit our press section for more mentions
We hope this is just the tip of the iceberg and Grasshopper continues to bring good news to the entire team!








The pilot plant is OPEN to VISIT. Don’t miss out!
With most of the tests completed, there is lots to show and tell about the project. And the best to learn it all is to visit the pilot plant!
As the end of the project approaches, also does the transportation of the plant to its final site in Delfzijl, Netherlands. But before that, we want to make the most of the time while the plant remains in Abengoa’s testing facilities in Seville, Spain. So why not schedule a trip to enjoy the southern Mediterranean heat as winter approaches? Get in touch with us through the official mail info@grasshopperproject.eu or by our contact form here. If travelling is not possible for you at the moment, we invite you to participate in our webinar for virtual visit of the plant. We haven’t decided on a final date for it yet so make sure to keep checking our web for updates.
Both companies and institutions have already enjoyed the visit to the pilot plant . Including DSOs, Oil&Gas, universities… any interested parties are more than welcomed. Want to take a look? See the pictures below!
Read More
The Pilot Plant is Doing Great! – Testing Update
It has been a while since our last update. And not because the project has stopped, but quite the opposite! We have been experiencing quite busy months since the begging of the year. At this point, we have reached the final phase of testing in Abengoa’s facilities in Seville (Spain). And in a couple of months, and if Covid-19 allows it, the plant will be installed in the final site in Delfzijl (Holland), where it will remain operating for 5 years. So, lets go into details on what have been accomplished so far.
1st testing phase completed.
During the initial months of testing, we focused on the plant itself without having the fuel cell stacks installed. In this period no power was produced, allowing us to optimise control strategies and check for improvements without worrying about damaging the delicate stacks. Many different tests were carried out including the initial commissioning and functional tests of individual equipment. Most tests fall into the category of these three main types.

As with any other plant, commissioning comes first to ensure the correct functioning of all equipment and sensors. Several steps are performed :
- Verification of correct installation and electrical connection
- Scaling of communication signals and IO testing.
- Cleaning of circuits and equipment
- First “cold” start-up of individual components and actuators such as pumps compressors, valves…
- A preliminary control loop adjustments
Once all the components have been tested individually, it is time to start the subsystem functional tests. Apart from the development of new fuel cell stacks, the project aims to design an efficient plant that protects the stacks to expand their lifespan to the maximum. Including a dynamic, fast and pressurised operation. For that, a precise control is required. Testing each subsystem before the stacks are installed is therefore critical. It allows to test without worrying about damaging the stacks.

Air and Hydrogen subsystems.
Combines flow, pressure, temperature and humidity control to provide the best possible conditions of air and hydrogen to the stacks. More than 10 control loops and variables intertwine with each other. Advance control techniques such as smith predictors and multi-variable control were needed to accomplish all targets.
Cooling and utilities.
Since heat is provided by the stacks while generating power, thermal response of the plant was simulated to adjust the control. Moreover, other test were carried out as safety Nitrogen inertisation, auxiliaries consumption measurement, environmental control and anti-freezing features…
Control architecture and HMI improvements
Starting from the programming already developed during construction, a lot of effort and time has been invested into validating and updating it. With special effort on the HMI (Human machine interface), a key part of a correct plant operation.

One of the main topics that come to mind talking about Hydrogen Power Plants is safety. Hydrogen has sometimes a bad reputation of being dangerous. But, like any other fuel like natural gas or diesel, by making the adequate engineering decisions and following the safety standards created by industry experts, safe operation is assured. This is nothing new, many conventional industries have been safely working with Hydrogen since long back. And their experiences, with further innovations, are applicable to Hydrogen Power plants. In Grasshopper, safety has always been a core engineering focus, and of course, during testing even more. The safety analysis is, as a consequence, a continuous process that starts at the engineering phase, follows the construction, and finalises “as-built”.

Verification of Intrinsically safe cabling and other ATEX certified equipment
Intrinsically safe instrumentation is just one of the type of ATEX certified protection available but most instrumentation and sensors are designed as intrinsically safe equipment. Which doesn’t store enough electrical energy to be a possible ignition source
Leaks detection
PEM fuel cells are permeable equipment, this means that there is an unavoidable leakage of Hydrogen around the stacks. This is usually called the stack’s “breathing”. Because of this, is very important to minimise and characterise the leakage rate of the system while the stacks aren’t installed. In any case, if anything happens that creates a hazardous atmosphere, fixed Hydrogen detectors are always monitoring the container. Additionally, hydrogen detection tape is installed around possible leak points for maintenance revisions.
Testing of emergency stops and safety subsystems
Several layers of control ensure a safe operation. Not only for personnel protection but also to minimise damage to the equipment in a “loss of control” event. If Hydrogen is detected inside the container, an emergency shutdown is performed. This eliminates any possible ignition sources maintaining ventilation. More over, the hydrogen subsystem is immediately inertised with Nitrogen.
Characterization of air renovation flow inside the container.
An interesting aspect of the safety analysis done for the Grasshopper is the study of air flow inside the container. From the beginning , the plant was designed to promote a preferential flow of fresh air that would carry any possible leaks away from potential ignition sources, quickly out of the container. During the testing phase, these initial engineering decisions were validated with a real flow analysis of the air inside the container. With over 30 points of measurement, we could characterise the air flow speed, direction and variability with ambient conditions. Creating a clear image on how the renovations of air displace and mix within the container, and where pockets of Hydrogen could potentially create when a leak occurs. It is basically like performing a “real CFD” with the plant itself.

One of the main objectives of the project is participating in the reserve electric markets. To do so, a flexible and quick response of the plant is essential. As mentioned before in the process section of this article, it is important to do so without damaging the stacks. In this initial phase, we tested the PCS (Power Conditioning System), along with all the control strategies around it. Even though the plant was not generating power from Hydrogen at this moment, the rest of the system was operating as it would with the stacks. With the help of a DC source the real response of the fuel cells was also simulated.
Initial results show great response both in time and accuracy, complying with the energy request with just an error of 0.25%. The control system evaluates the energy request and translates it into a power setpoint that the plant will follow. Several variables accumulate and evaluate the produced energy along time. Allowing the plant to compensate for any mismatch. In the image below a typical response of the plant can be observed. From warm stand-by, the plant immediately responds to the energy demand. The control ensures that the total amount of energy exported matches the requested.

But all of this is only but a fraction of the tests carried out in this first phase. In the following weeks we will install the fuel cell stacks in the plant and power production will begin. Starting the second phase of FAT.
Read More